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1. Introduction

Consider a ‘macroscopic’ fundamental superstring wrapping p times around a circle of

radius R in the limit of large radius. Some spatial directions transverse to the string

could be compactified on a torus and the remaining are noncompact. In this case, the

worldsheet theory living on such a macroscopic string is particularly simple. For a string

winding the circle once, this theory consists of free bosons and free fermions corresponding

to the transverse oscillations of the string. As long as the energy scales of excitations are

much smaller compared to the string scale, the macroscopic string cannot break up or emit
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smaller loops of string. At very weak coupling, these low energy excitations along the

string are expected to decouple from the surrounding supergravity fields. Moreover, the

free worldsheet theory is manifestly superconformal. These observations raise the question

if a fundamental macroscopic superstring could be interpreted as a hologram of some bulk

dual theory.

To find the holographic dual, one could examine how the spacetime geometry is mod-

ified by the backreaction of the string. The supergravity solution corresponding to such

an infinitely extended fundamental superstring was found in [1, 2] using the two-derivative

string effective action. A fundamental superstring is in many ways the most basic ‘solitonic’

object in string theory and this solution is the most elementary brane solution in string

theory. Indeed, all other p-brane solutions can be constructed from it simply by applying

T and S duality transformations to the supergravity fields.

A characteristic property of this solution in all dimensions is that near the core of

the string, the effective string coupling g2
s determined by the local value of the dilaton

field goes to zero. This suggests that even after taking into account the backreaction, the

worldsheet would continue to decouple from the bulk. On the other hand, the string metric

near the core is singular and the curvatures become of the order of the string scale. This

suggests that it would be necessary to take into account higher derivative terms in the tree-

level string effective action to fully analyze the ‘geometry’ near the core. In fact, since the

curvature is of the order of the string scale, corrections arising from various higher derivative

terms would be equally important and an exact CFT description would be necessary. One

might hope that after taking into account the corrections to the geometry to all orders

in α′ expansion of the tree level effective action and possibly exactly by using some bulk

worldsheet conformal field theory, it would be possible to obtain the holographic dual of

the fundamental string hologram.

Further support for this idea comes from the investigations of higher derivative correc-

tions to the ‘geometry’ and entropy of what have been termed ‘small’ black holes [3 – 10].

If we take the radius R of the circle along which the string is wrapping to be very small

instead of very large, then one can view the string as a point-like object in one lower di-

mension. The string can carry in addition some quantized momentum q along the internal

circle. In this case, one obtains a BPS point-like object with two charges q and p. From

the perturbation analysis of the spectrum one finds that they have exponentially large

degeneracy that goes as exp (c
√
pq) as a function of the two charges where the constant c

equals 4π for heterotic strings and 2π
√

2 for Type-II strings in all dimensions. It is natural

to ask then if there is a two-charged BPS black hole whose entropy corresponds to the

degeneracy of these microscopic states similar to the three-charge case [11].

This expectation is indeed borne out in a number of examples with a beautiful con-

sistency between the macroscopic and microscopic aspects of the theory. The best studied

examples are the heterotic small black holes in four dimensions with N = 4 supersymme-

try. These black holes were analyzed using certain F-type four-derivative supersymmetric

corrections to the effective action which depend on a particular quadratic contraction of

the Riemann tensor. This analysis reveals that upon inclusion of these α′ corrections, the

geometry near the core is no longer singular but is of the form AdS2 × S1 × S2. The
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sphere S2 has radius of order one in string units and can be regarded as the ‘horizon’

of this extremal small black hole. The dilaton no longer vanishes at the core and the

four-dimensional string coupling g2
4 ∼ 1/

√
pq is now small but finite. As a result, the

area of the horizon measured in units of the four dimensional Planck length is large and

scales as
√
pq. The resulting entropy, incorporating the modifications due to Wald [12 – 14]

to the Bekenstein-Hawking formula [15, 16], is in perfect agreement with the microscopic

degeneracy including the precise numerical coefficient.

Inclusion of other higher derivative corrections is expected to correct the geometry

further. Moreover, in string theory, the metric, like all other fields, is subject to field re-

definitions. Geometric notions at the string scale determined by a given metric are not

invariant under such field redefinitions. What makes the above analysis tractable and re-

liable is the fact that the Wald entropy of a black hole is a much more robust physical

quantity than the ‘geometry’ of the horizon. To begin with, for these black holes, the

absolute degeneracy of these states equals a topological index given by a helicity super-

trace [7 – 10]. Furthermore, the system can be analyzed from a five-dimensional point of

view. The radius of the circle S1 of the near horizon region gets attracted to the near

horizon value of
√
q/p in string units irrespective of the asymptotic value R of the radius.

The AdS2 and the S1 factor can then be combined into a fiber bundle as an AdS3 with

possible global identifications which could be viewed as the near horizon region of a small

black string.1 Using the larger symmetries of AdS3 in this set-up, the Wald entropy can

then be related to the anomaly in the boundary R-current and in turn to the bulk Chern-

Simons terms [17, 18]. These are already included in the four-derivative action and are

not further corrected by other higher derivative terms. Thus the Wald entropy computed

from the five-dimensional four-derivative supersymmetric action is determined entirely by

symmetries and anomalies under the reasonable assumption that the near horizon region

continues to have the symmetries of AdS3 even after including all higher derivative cor-

rections. This reasoning explains why analysis of the four derivative action is adequate

for computing certain quantities such as the Wald entropy. One can also show explicitly

using the entropy function formalism [6] that includes higher curvature terms that Wald

entropy is invariant under field redefinitions barring singular ones that take AdS3 ×S2 to

a singular space.2

One can actually go further and compare even subleading corrections to the statistical

entropy in an asymptotic expansion in 1/
√
pq. The subleading corrections to thermody-

namic quantities are of course ensemble dependent, but there are finite possibilities to

choose from which can be compared with the microscopic counting to determine which is

the correct one. The microscopic counting of these states is exact since it can be done

in string perturbation theory. For the macroscopic analysis, one can use the ensemble

proposed in [19] or in [8] with an appropriate measure [20, 21]. One then finds that the

1The extent of the string can be infinite and only its thickness is ‘small’ given by the string scale horizon.

It is perhaps more accurate to call it a ‘thin’ black string.
2These arguments based on anomalies also explain why keeping only the four-derivative action is not

enough for the small black holes in Type-II string since the gauge current is non-anomalous and is not

useful to determine the Wald entropy. We will explain these issues in some detail in section 2.2.
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macroscopic entropy and the microscopic entropy are in striking agreement to all orders in

an asymptotic expansion which is governed by the same associated Bessel function. Since

the asymptotic expansion is determined entirely by the saddle point quantities, this com-

parison is independent of subtleties having to do with the choices of contours for inverse

Laplace transform that enters the definition of the ensemble. It is nontrivial that the same

associated Bessel function appears in the two analyses that are a priori completely unre-

lated. Such a comparison of macroscopic and microscopic entropies to all orders constitutes

a nontrivial check of the consistency of string theory.

Even though the agreement between the microscopic counting with the Wald entropy

is best understood for heterotic small black holes in four dimensions and the corresponding

string in five dimensions, there are strong indications that many aspects of the story are true

in all dimensions and also for Type-II strings. A general scaling argument due to Sen [22]

gives the correct dependence
√
pq of the entropy on the charges in all dimensions [23]

assuming that upon inclusion of the higher derivative corrections the geometry near the core

has a black hole horizon. The precise numerical coefficient cannot be computed because the

supergravity analysis of higher derivative actions in higher dimensions is more complicated.

The important point though is that the scaling argument seems to work uniformly in all

dimensions and for all superstrings because it only relies on tree level bosonic action for NS

fields that is common to all string theories. The scaling argument can also be successfully

generalized to the states with spin assuming that upon inclusion of the higher derivative

corrections the geometry near the core has a black ring horizon. The entropy in this case

has the form
√
pq − rJ with a correct dependence on the spin J and a dipole charge r in

agreement with the microscopic counting [24 – 26].

One could elevate these observations to a general principle that corresponding to every

solitonic system in string theory which has a large entropy, there must be a solution realizing

a black object in the low energy effective action that has the same entropy. This would

include not only big black holes and black rings but also the small ones. The microscopic

and macroscopic structure of the theory can then be consistent with each other in a natural

way. By the same token, and from the general experience in holography, one expects

that any solitonic object with a worldvolume theory which typically will be conformal

in deep infrared must have an AdS holographic dual as long as gravity decouples from

the worldvolume. This reasoning suggests that corresponding to the worldvolume of the

fundamental string, a holographic dual must exist in all dimensions.

Encouraged by these general arguments and some of the successes, we examine in this

paper the idea of a fundamental superstring as a hologram, taking seriously the AdS3

symmetries of the near horizon region. For reasons outlined above, we choose to be guided

by symmetries, anomalies, and Wald entropy and refer to the string scale geometry only

as a shorthand for signifying the relevant symmetries. We find that these considerations

lead us to a very tightly constrained theory describing the worldsheet dynamics of strings

in the bulk. This worldsheet theory involves a noncompact WZW model SL(2)k=2 (and

its heterotic counterpart) which gives us the correct entropy. Precisely for this theory, we

find that the boundary (super)symmetries are realized in the bulk string theory.

The discussion is organized as follows. In section 2 we set up our conventions, review
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what is known about small black holes, and list the expected global superconformal sym-

metries of the near horizon region in this context containing an AdS3 factor. This raises a

number of puzzles which we outline and resolve in the subsequent sections. In section 3 we

consider the fundamental superstring as a hologram in the Green-Schwarz light-cone for-

malism. This analysis makes transparent how the global superconformal symmetries could

be realized in the hologram and which of them can be extended to local superconformal

symmetries. We also discuss an unusual light-cone gauge which is relevant for the com-

parison with the bulk dual. In section 4 we specialize to the case of the five-dimensional,

Type-II small black string and construct the dual bulk theory with the symmetries of

AdS3 × S2. In section 5 we repeat the analysis for five-dimensional heterotic small black

strings. In particular, we construct explicitly the boundary symmetries from the bulk,

compute the boundary entropy from the bulk, and show that these are in agreement with

the hologram. We conclude in section 6 with a discussion of conclusions, open problems,

and outlook.

There a number of related works that have some overlap with considerations here [27 –

32]. We will comment on some relations to these works during the course of discussion.

2. Near horizon symmetries of small black holes

2.1 Macroscopic superstrings

To discuss various toroidally compactified superstrings uniformly, we take the spacetime

to be of the form IR1,1 × IRd × T8−d with coordinates XM ;M = 0, . . . , 9 split as M =

(µ, i,m). The macroscopic string worldsheet extends along the Lorentzian space IR1,1 with

coordinates Xµ;µ = 0, 9 where X0 is the time coordinate and X9 is a circle coordinate,

X9 ∼ X9 + 2πR. There are d noncompact transverse directions Xi; i = 1, . . . , d along a

Euclidean space IRd and (8−d) compact directionsXm;m = d+1, . . . , 8 along a torus T8−d.

The worldsheet action in conformal gauge for these ten bosonic spacetime coordinates

is given by
1

2πα′

∫
dσdτ

(
∂+X

M∂−X
NηMN

)
, (2.1)

where ηMN is the 10d Lorentzian metric with signature mostly positive. We have defined

σ± = τ ± σ. In addition, there are worldsheet fermionic partners appropriate for the

heterotic or the Type-II string and leftmoving bosonsHI with I = 1, . . . , 16 for the heterotic

string that parameterize an internal torus of E8×E8. The total action is subject to Virasoro

constraints which we discuss in some detail later in section 3.

Now consider a fundamental string wrapping p times carrying quantized momentum q

along the circle. We define dimensionless left-moving and right-moving momenta

qR,L =

√
α′

2

(
q

R
± pR

α′

)
. (2.2)

If we take the right-movers of the superstring to be in the ground state then this state is

supersymmetric and the mass M saturates the BPS bound

M =

√
2

α′ qR. (2.3)
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The left-moving oscillation number NL of the transverse oscillations satisfies the Virasoro

constraint

NL − 1 =
1

2

(
q2R − q2L

)
= pq, (2.4)

for the heterotic string and

NL = pq, (2.5)

for the Type-II string. There is a large degeneracy d(q, p) of such states since this constraint

can be satisfied by exciting various oscillations in many different ways. The statistical en-

tropy given by the logarithm of d(q, p) goes as

c
√
pq, (2.6)

with c = 4π for heterotic and c = 2π
√

2 for Type-II.

In the limit of large R for fixed q, this state can be viewed as an infinitely extended

string that will act as the source for various supergravity fields. Let r be the radial coor-

dinate along the noncompact directions r2 = xixi. The dilaton field Φ(r) in the (d + 2)

noncompact dimensions is given by the transverse harmonic function

e−2Φ(r) = 1 +
pΩ

rd−2
(2.7)

where Ω is a geometric factor. The metric in the string frame then takes the form

ds2 = e2Φ(r)(dxµdxµ) + (dxidxi) + (dxmdxm), (2.8)

and the nonvanishing components of the 2-form field BMN are given by

B09 =
(
1 − e2Φ(r)

)
. (2.9)

2.2 Small black holes, scaling, and near horizon symmetries

Taking into account the higher derivative corrections is in general very complicated be-

cause one has to solve higher order nonlinear differential equations. The task is greatly

simplified using supersymmetry. In four dimensions using the superconformal formula-

tion of higher derivative supergravity one can incorporate four-derivative F-type terms

and find the BPS solutions [33 – 37]. The solutions corresponding to two-charge heterotic

BPS states discussed above are found to have a string scale near horizon geometry of

AdS2 × S1 × S2 [3, 4]. This system can also be analyzed from a five-dimensional point of

view using the four derivative supergravity action of [38]. The corresponding small black

string solution with an AdS3 × S2 near horizon geometry is discussed in [39, 40].

The main virtue of the four derivative action in five dimensions is that it already incor-

porates the gravitational Chern-Simons interaction and all terms related to it by supersym-

metry. Under suitable conditions which will be discussed in greater detail in section 2.3,

one can determine the Wald entropy of the black holes completely using symmetries and

anomalies. The four derivative action is thus adequate to be able to draw reliable and

useful conclusions about the entropy of the heterotic small black holes.

– 6 –
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The attractor values of the dilaton and the radius are determined entirely in terms of

charges

g2
5 =

1

p
, g2

4 =
1√
pq
, R =

√
q

p
, (2.10)

where g5 is the 5d string coupling, g4 is the 4d string coupling, and R is the radius of the

circle in string units around which the string wraps. This shows in particular, that for

large p, the near horizon string coupling can be made arbitrarily small. One can therefore

consistently assume that the worldsheet of the fundamental string, which we will later

interpret as the hologram, decouples from the massless supergravity fields.

Let us now list the symmetries of this near horizon solution for the heterotic small

black string. To start with, we expect to have the global symmetries of AdS3 × S2 which

are SL(2, IR)× SL(2, IR)× SO(3). We also expect a local conformal symmetry V irasoro×
V irasoro from a Brown-Henneaux construction [41]. The string is a half-BPS state to

start with so we have eight unbroken global spacetime supersymmetries. Near the horizon,

in the N = 2 formalism that we have used, the supersymmetry is enhanced to include 4

additional superconformal symmetries. So we expect altogether at least 12 superconformal

symmetries and possibly 16 superconformal symmetries if the problem could be analyzed

in a manifestly N = 4 formalism. In the Type-II case, if a small black hole were to exist,

we would expect at least 12 + 12 and possibly 16 + 16 superconformal symmetries.

As mentioned in the introduction, a general scaling argument suggests that a small

black hole ought to exist in all dimensions [22, 23]. If a small black string were to exist

in higher dimensions for IR1,1 × IRd × T8−d compactifications with d = 3, . . . 8, we would

expect possible near horizon geometries that have symmetries of AdS3 × Sd−1 × T8−d

with d = 3, . . . , 8.3 If we assume that there is a left-moving Virasoro and a right-moving

Virasoro as it happens for the D1-D5 system, then we expect to have for the right-

movers at least a global SL(2, IR) symmetry. The supercharges must transform under

Spin(d)× Spin(8− d) and so we are led to look for a supergroup that contains the bosonic

symmetry SL(2, IR) × Spin(d) × Spin(8 − d) and at least 12 and possibly 16 global super-

conformal supersymmetries.4 Possible supergroups that contain sixteen supersymmetries

are limited in number. The list of symmetries of heterotic small black strings with a pos-

sible supergroup containing them is summarized in the table (1). For example, the group

OSp(8|2) contains Spin(8) × Sp(2) as a bosonic subgroup and the fermionic generators

transform as vector of Spin(8) and a doublet of Sp(2) ∼ SL(2). Similarly OSp(4∗|4) con-

tains SO∗(2, 2) ∼ SL(2) × Spin(3) and Sp(4) ∼ Spin(5) as bosonic subgroups. See [42] for

a nice introduction to supergroups in this string theory context.

There are a number of puzzles that arise from these identifications of the supergroups

for the global symmetries of the horizon. It is well-known that maximal allowed local

superconformal symmetries are given by an N = (4, 4) superconformal theory that has

SU(2) R-symmetry both on the left and on the right. This algebra of local currents has

a closed subalgebra whose fermionic part consists of 8 + 8 = 16 global superconformal

3The case d = 2, although not considered here, could be relevant for studying small black rings in four

dimensions if they exist.
4We would like to thank A. Strominger for valuable discussions pertaining to symmetries. See also [29].
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Space Horizon Symmetry R Symmetry Possible Supergroup

IR8 Spin(8) Spin(8) OSp(8|2)
IR7 × S1 Spin(7) Spin(7) F (4)

IR6 × T 2 Spin(6) Spin(6) × Spin(2) SU(1, 1|4)
IR5 × T 3 Spin(5) Spin(5) × Spin(3) OSp(4∗|4)
IR4 × T 4 Spin(4) Spin(4) × Spin(4) SU(1, 1|2)2
IR3 × T 5 Spin(3) Spin(3) × Spin(5) OSp(4∗|4)

Table 1: For heterotic compactifications of the form IR1,1 × IRd ×T8−d(d = 3, . . . 8), the expected

global rotational symmetry of the horizon in various dimensions are listed here in the second column,

and the global R-symmetries of the supercharges are in the third column. Possible supergroups that

contain these symmetries assuming 16 superconformal symmetries are listed in the fourth column.

charges.5 How does one square this the much larger global symmetries which for example

require 16 + 16 = 32 supersymmetries for the Type-II case? For these reasons, we will

not commit ourselves to the supergroups in table (1) and regard them as a tentative

identification. We will be guided instead by the holograms discussed in section 3 where it

is easy to write down the symmetry algebras quite explicitly. The question of global and

local symmetries is somewhat subtle even in the hologram and we shall discuss this issue

in more detail in section 3. The usual global supersymmetries are easy to display but the

realization of global superconformal symmetries involves an analog of spectral flow. It is

not possible to make all global and local symmetries manifest at the same time.

2.3 Wald entropy and anomalies

We now briefly review the arguments that utilize the AdS3 symmetry and anomalies to

compute the Wald entropy [17, 18, 43].

The dynamics of the theory in this background will be governed by an effective three

dimensional action, obtained by compactifying the remaining directions including the an-

gular coordinates of the horizon. This effective action will have the form

∫
d3x

√
− detG

(
L(3)

0 + L(3)
1

)
, (2.11)

where L(3)
0 is a lagrangian density with manifest general coordinate invariance, and√

− detGL(3)
1 denotes the gravitational Chern-Simons term:

√
− detGL(3)

1 = K Ω3 , (2.12)

Ω3 being the Lorentz Chern-Simons 3-form and K is a constant. The action admits an

AdS3 solution

ds23 = L2
[
e2(−r2dt2 + r−2dr2) + (dy + erdt)2

]
, (2.13)

5Following standard convention, N = (0, 4) supersymmetry in two dimensions has four usual right-

moving supersymmetries. Together with the four additional superconformal symmetries, it has a total of

eight global supercharges.
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where L is an overall scale. We have written it in the form of a fiber bundle. The fiber is

a circle with coordinate y and the base is an AdS2 with coordinates (r, t) so that e can

be viewed as a unit of charge associated with the Kaluza-Klein reduction along y. One

can then show, both in the Euclidean action formalism [17, 18, 44] as well as using Wald’s

formula [45, 46], that the entropy of the black hole with near horizon geometry described

in (2.13) has the form:

SBH = 2π

√
cLQ

6
forQ > 0 ,

= 2π

√
cR |Q|

6
forQ < 0 , (2.14)

where Q is the electric charge associated with the Kaluza-Klein gauge field, and

cL = 24 (−g(l) + πK) , cR = 24 (−g(l) − πK) , (2.15)

g(l) =
1

4
π l3 L(3)

0 , l = 2Le . (2.16)

L(3)
0 in (2.16) has to be evaluated on the near horizon background (2.13). This gives a

concrete form of the Q dependence of the entropy in terms of the constants cL and cR.

The constants cL and cR given in (2.15) can be interpreted as the left- and right-moving

central charges of the two dimensional CFT living on the boundary of the AdS3 [18, 17, 44].

The Kaluza-Klein momentum Q is interpreted as the momentum in this boundary CFT

which is the (L0 − L0) eigenvalue of a given state in this CFT. The two cases in (2.14)

correspond to L0 = 0 and Q > 0 or L0 = 0 and Q < 0. With these identifications, (2.14)

can be interpreted as simply Cardy formula in this CFT. This argument can be summarized

by saying that Wald entropy of the bulk equals the Cardy entropy of the boundary.

If the theory has at least N = (0, 2) supersymmetry then one can actually do more and

determine even cL and cR using anomalies. In our case the boundary theory will in fact

have N = (0, 4) supersymmetry. In this case, the central charge cR is related to the central

charge of an SU(2)R current algebra which is also a part of the N = (0, 4) supersymmetry

algebra. Associated with the SU(2)R currents there will be SU(2) gauge fields in the

bulk, and the central charge of the SU(2)R current algebra will be determined in terms

of the coefficient of the gauge Chern-Simons term in the bulk theory. This determines

cR in terms of the coefficient of the gauge Chern-Simons term in the bulk theory [18,

17, 43]. On the other hand from (2.15) we see that cL − cR is determined in terms of the

coefficient K of the gravitational Chern-Simons term. Since both cL and cR are determined

in terms of the coefficients of the Chern-Simons terms in the bulk theory, they do not receive

any higher derivative corrections. This completely determines the entropy from (2.14).

Furthermore the expression for the entropy derived this way is independent of all the near

horizon parameters and hence also of the asymptotic values of all the scalar fields. Since

this argument is quite general and three-dimensional, it is expected to work for higher

dimensional small black strings as well with transverse space of the type Sd−1 × T8−d as

long as the Spin(d) symmetry couples chirally to bulk gauge fields [47].
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While the argument works beautifully for heterotic small black strings, it appears to

fail spectacularly for Type-II small black strings. For instance, for Type-II on T6, the

F-type four-derivative terms are zero and hence to this order the horizon continues to be

singular with a vanishing horizon and the resulting Wald entropy would appear to be zero.

What is worse, if we identify isometries of Sd−1 with the conformal R-symmetries then

one would conclude by similar reasoning that cL = cR = 0 giving vanishing entropy in

contradiction with microscopic counting and the scaling argument.

A correct interpretation of these results, as we will argue in the next two sections is

that in the Type-II case, the geometric rotational symmetry of the horizon is nonchiral

and does not correspond to the conformal R-symmetry. There are additional chiral gauge

symmetries of stringy origin which can be identified with the conformal R-symmetries both

for the right and the left-movers. The geometric symmetries of the horizon are a nonchiral

linear combination of these R-symmetries. This structure will be quite clear also from the

hologram that we discuss in section 3. Now, the coefficient of the gravitational Chern-

Simons term is proportional to cL − cR which vanishes. The gauge Chern-Simons term

in supergravity being nonchiral also couples to cL − cR. Therefore, unlike the heterotic

case, the Chern-Simons terms are not useful for determining the entropy.6 This means in

particular that analyzing only the four-derivative action is not adequate to find the correct

entropy but one must take into account all α′ corrections as suggested by the scaling

argument. Application of the scaling argument will then tell us that entropy will have

the right dependence on charges but determination of the precise coefficient is intrinsically

stringy and not easily doable in supergravity. This explains why small black holes and black

strings have been difficult to find in the Type-II case. Our stringy construction section 4

will give a way to compute this entropy using an exact CFT construction of the worldsheet.

Many of these confusing issues are neatly resolved by looking at the holograms that we

expect for this system. We therefore turn next to the hologram for some guidance about

the structure of various symmetries.

3. The fundamental superstring as a hologram

There is a simple way to realize all the required symmetries expected for the near horizon of

a small black string using a free field representation which is furnished by the worldsheet of

a toroidally compactified Green-Schwarz macroscopic superstring in a particular light-cone

like gauge. For our purposes, this specific free field representation is not only simple but

will have a direct physical interpretation as the boundary hologram. It is an instructive

exercise to work out this representation in some detail. In particular, it will illuminate the

role of global and local symmetries and will provide some guidance as to which of the global

symmetries can become local conformal symmetries. We would like to regard all transverse

oscillations as the fields along the worldsheet and also solve the Virasoro constraints. For

this purpose it will be useful to choose a slight variant of the usual light cone gauge using

the compact X9 direction as one of the light-cone coordinates. We discuss this ‘compact

6We would like to thank P. Kraus for explaining this point of view.
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light-cone gauge’ and the various resulting algebras in section 3.1. In section 3.3 we choose a

further variation of this gauge by using one of the internal compact directions to be the light-

cone directions. This will prove useful for later comparison with the bulk holographic dual.

A theory of p identical strings has also a symmetry Sp which permutes the different

strings. The full holographic theory is then a symmetric product of p strings. This is

consistent with S duality which maps it to a theory of D-strings. In the bulk theory which

we discuss in the following sections, the corresponding statement is that there are states

with non-zero values of spectral flow number in SL(2). In this section, we shall discuss

the symmetries of the system for which it is sufficient to consider the free theory of the

transverse oscillations of the string.

3.1 Holograms in the compact light cone gauge

The action of the superstring in the conformal gauge is subject to Virasoro constraints

T++ =
1

α′∂+X
M∂+XM + T int

++ = 0, (3.1)

T−− =
1

α′∂−X
M∂−XM + T int

−− = 0. (3.2)

Here T int
++ and T int

−− are the stress tensor components of the fermionic and internal coordi-

nates which we discuss more explicitly later.

We would like to solve these constraints explicitly so that we have to deal with only

the transverse physical oscillations. For this purpose, it is useful to define the ‘compact’

light-cone coordinates

X± =
(X0 ±X9)√

2
. (3.3)

Ignoring the oscillators, the zero mode expansion of the two fields X0 and X9 is given by

X0 = x0 + p0α′τ (3.4)

X9 = x9 + α′ q

R
τ +

wR

α′ σ (3.5)

We now choose the following light-cone like gauge

X+ = x+ +
α′
√

2

[(
p0 +

q

R

)
τ +

wR

α′ σ

]
(3.6)

so that the X+ coordinate has no oscillators. Note that this is different from a discrete

light cone. Since the coordinate X9 is compact, X9 ∼ X9 + 2πR, the light-cone direction

spirals around the cylindrical (X0,X9) space but has infinite extent. As in (2.2), we can

define dimensionless left-moving and right-moving lightcone momenta,

q+R,L =

√
α′

2

(
p0 +

q

R
± wR

α′

)
, (3.7)

so that

∂+X
+ =

√
α′

2
q+R , ∂−X

+ =

√
α′

2
q+L . (3.8)
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This allows us to solve the Virasoro constraints for the remaining longitudinal mode in

terms of the transverse modes,

∂+X
− =

√
α′

q+L
(T tr

++); ∂−X
− =

√
α′

q+R
(T tr

−−), (3.9)

where the superscript tr refers to all spacetime and internal degrees of freedom that are

transverse to (X0,X9). The mass-shell conditions (2.3), (2.4), and (2.5) follow from iden-

tifying the Fourier modes α−
0 with q−R and α̃−

0 with q−L . We see that in the limit of R→ ∞,

in the zero winding sector p = 0, this gauge reduces to the usual light-cone gauge. On

the other hand, for nonzero winding p 6= 0 and for fixed q, it resembles the static gauge

which is what we are interested in. Unlike the static gauge however, it has the virtue of

the light-cone gauge that the Virasoro constraints are explicitly solvable.7 For the naive

static gauge X9 = σR, the Virasoro constraints are quadratic in the X0 oscillators and are

difficult to solve at the level of quantum operators.

Since all longitudinal degrees of freedom are now either gauge fixed or determined in

terms of the transverse modes, we can focus on the physical transverse modes. Fermions can

be incorporated in the usual way and we will use the light-cone Green-Schwarz formalism.

The transverse action for the Type-IIB superstring on IR1,1 × IRd ×T8−d compactification

is given by

S =
1

2πα′

∫
dσdτ(∂+X

i∂−X
i + ∂+X

m∂−X
m + iα′Saα

+ ∂−S
aα
+ + iα′S̃aα

− ∂+S̃
aα
− ), (3.10)

where i = 1, . . . , d transforms in the vector representation of Spin(d); m = d + 1, . . . , 8

transforms in the vector representation of Spin(8−d). Similarly, for fermions, a transforms

as a spinor of Spin(d) and α as a spinor of Spin(8 − d). For uncompactified string, that

is, the special case when d = 8, bosons transform in the vector representation 8v and the

fermions in the spinor representation 8s of Spin(8). For the Spin(8) spinor and gamma

matrices we follow the conventions in appendix 5.B of [49].

The group-theoretic structure of bosons and fermions for d < 8 is then determined by

the embedding Spin(d)×Spin(8−d) ⊂ Spin(8). For example, for the Spin(3)×Spin(5) case,

our conventions are summarized in appendix B. For Type-IIA strings, the action is similar

except that the left-moving fermions transform in conjugate spinor representation 8c of

Spin(8). For heterotic strings, we do not have left-moving fermions but instead left-moving

internal bosons HI ; I = 1, . . . 16 that live on an E8 × E8 lattice.

3.2 Symmetries of the holograms

We would now like to view this theory defined by (3.10) as a hologram and in particular

understand all its symmetries. Various global and local symmetries are very easy to work

out because the computations are identical to those that appear in the first quantization of

the light-cone superstring. The physical interpretation of these symmetries here is however

7A gauge-fixing of this kind was discussed in [48]. We thank Kostas Skenderis for bringing this to our

attention.
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completely different. The theory given by the action above should be viewed as the ‘second

quantized’ string field theory action of the strings moving in the holographically dual bulk

theory. Construction of the holographically dual worldsheet which we discuss in section 4

gives the first quantized realization of this symmetry algebra.

We consider here the special case d = 8 to simplify the discussion and also focus on

only right-movers while discussing the chiral currents. The mode expansions of the basic

fields are

∂+X
i =

√
α′

2

∑

n 6=0

αne
−inσ+

, ∂−X
i =

√
α′

2

∑

n 6=0

α̃ne
−inσ−

, (3.11)

for bosons and

Sa
+ =

∞∑

n=−∞
Sa

ne
−inσ+

, Sa
− =

∞∑

n=−∞
S̃a

ne
−inσ−

, (3.12)

for the fermions. The oscillators satisfy the usual canonical commutation relations

[αi
m, α

j
n] = mδm+nδ

ij , {Sa
m, S

b
n} = δm+nδ

ab, (3.13)

and similarly for the left-movers. In addition there are bosonic zero modes xi and pi which

satisfy the Heisenberg commutation relations

[xi, pj ] = iδij . (3.14)

To begin with, the action has a global Spin(8) rotational symmetries generated by J ij ,

which we write as

J ij = Lij + Eij +Kij
0 + Ẽij + K̃ij

0 , (3.15)

with

Lij = (xipj − xjpi), (3.16)

Eij = −i
∑

n>0

1

n
(αi

−nα
j
n − αj

−nα
i
n), (3.17)

Kij
0 = − i

4

∑

n>0

Sa
−nγ

ij
abS

b
n, (3.18)

and similarly for the contributions Ẽij and K̃ij
0 from the left-moving oscillators. Note that

even though the oscillator contributions are chiral, the piece Lij which depends on the zero

modes xi and pi is nonchiral and as a result the rotation symmetry generated by the Jij is

nonchiral. This fact will be important later.

In addition to this global, nonchiral symmetry, there are a large number of local, chiral

symmetries. For the right-movers, we have the conformal symmetries generated by the

spin-2 stress tensor T (σ+), supersymmetries generated by the spin-3/2 currents Qȧ(σ+) as

well as Spin(8) affine algebra generated by the spin-1 currents Kij(σ+). These operators
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are given by

T (σ+) =
1

α′ (∂+X
i∂+X

i) +
i

2
Sa

+∂+S
a
+ (3.19)

Qȧ(σ+) =
1√
α′

(γi)ȧaS
a
+∂+X

i, (3.20)

Kij(σ+) = − i

4
Sa

+γ
ij
abS

b
+ . (3.21)

The index i transforms in the vector representation 8v of Spin(8), the index a in the

Majorna-Weyl spinor representation 8s of positive chirality, and the index ȧ in the conjugate

Majorana-Weyl spinor representation 8c of negative chirality and γi
aȧ are the Clebsch-

Gordon coefficients between these three representations. There are similar currents for the

left-movers. In the heterotic case, one does not have the supersymmetries and the Spin(8)

current algebra on the left but instead the E8 ×E8 current algebra which contributes also

to the stress tensor as usual.

Using the mode expansions of operators above and the commutation relations (3.13),

it is easy to obtain the Virasoro algebra

[Lm,Ln] = (m− n)Lm+n +
c

12
(m3 −m)δm+n, (3.22)

with central charge c = 12p,8 the commutators

[Lm, Q
ȧ
n] =

(
1

2
m− n

)
Qȧ

m+n , [Lm,K
ij
n ] = −nKij

m+n, (3.23)

and the Kac-Moody algebra

[Kij
m,K

kl
n ] = iδikKjl

m+n − iδilKjk
m+n +

k̃

2
(m− n)δm+n(δikδjl − δjkδil). (3.24)

There is in addition a nontrivial anticommutator [50],

{Qȧ
m, Q

ḃ
n} = 2δȧḃLm+n + (m− n)(γij)ȧḃKij

m+n + c̃

(
m2 − 1

4

)
δȧḃδm+n, (3.25)

where k̃ and c̃ are some constants. The modes of the supercurrent Qȧ
m transforms as a

spinor under the global rotations,

[J ij , Qȧ
n] = − i

2
(γij)ȧ

ḃ
Qḃ

n. (3.26)

If we consider a toroidal compactification IR1,1 × IRd × T8−d, we have noncompact co-

ordinates xi; i = 1, . . . , d and compact coordinates xm;m = d + 1, . . . , 8. The toroidal

identifications of the compact coordinates xm breaks the rotational symmetry and we only

have the Spin(d) symmetry generated by Jij now with i, j = 1, . . . d. However, the chi-

ral symmetries above work as before simply by decomposing the spinor indices of Spin(8)

under Spin(d) × Spin(8 − d).

8For a singly would string the central charge would be 12 but multiple winding is equivalent to having

p species and hence the central charge becomes 12p.
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There is an anomaly free subalgebra of the Virasoro algebra generated by (L0,L1,L−1)

and (L̃0, L̃1, L̃−1) which generates the global SL(2, IR) × SL(2, IR) which can be identified

with the isometries of an AdS3. We also have the rotational Spin(d) symmetries generated

by Jij which can be identified with the isometries of a spherical ‘horizon’ Sd−1. There are

sixteen supersymmetries (Qȧ
0, Q̃

ȧ
0). In addition, there can be conformal supersymmetries

which we will discuss shortly. These symmetries together already give us enough reason to

consider this worldsheet theory as the hologram of the near horizon geometry of a small

black string in d+ 1 noncompact dimensions discussed in the previous subsection that we

are after. Taking this hologram seriously then predicts that the bulk theory must have not

just these global symmetries but also the local Virasoro symmetries on the left and the

right as well as additional chiral symmetries which we now discuss.

The hologram also makes it transparent as to which symmetries can possibly be realized

as chiral, local symmetries and which are only global symmetries. For example, it is clear

that even though this algebra looks very close to a possible superconformal algebra of

(8, 0) type with a possible Spin(8) conformal R-current, this is not true. This is because

the commutator of Kij
m with Qȧ

n does not close and one obtains instead,

[Kij
m, Q

ȧ
n] = − i

4
(γijγk)aȧ

∑

r

Sa
−rα

k
n+m+r, (3.27)

so we see that the right-hand side does not equal i
2γ

ij

ȧḃ
Qḃ

m+n as one might expect if this

were to form a closed algebra and if Qȧ
m were to commute as modes of a spinor operator

under the R-symmetry. The reason for this failure is of course obvious since the generators

Qȧ
m commute as spinors only with the total angular momentum Jij and not if we consider

only Kij
0 . More explicitly, Qȧ

m defined in (3.20) contain terms that are proportional to pi

which commute with Kij
0 and commute as a vector only when we take into account the

orbital angular momentum Lij .

This shows that even though we have a global Spin(8) R-symmetry that acts on the

supercharges, it cannot be extended to a local, chiral conformal R-symmetry [51]. This

is just as well because otherwise one would obtain a closed N = (0, 8) superconformal

algebra from the commutators of (Lm, Q
ȧ
n,K

ij
l ) with Spin(8) chiral R-symmetry. This

would contradict general theorems which state that the maximal allowed (right-moving)

linearly realized superconformal symmetry is N = (0, 4) [52, 53]. The failure of the R-

symmetry to be chiral simply stems from the fact that pi must transform under Spin(8) in

order that Qȧ
m transforms as a spinor. This necessitates the inclusion of the nonchiral Lij

piece in the R-symmetry generated by Jij .

The action (3.10) does admit a N = (2, 2) and N = (4, 4) superconformal symmetry

if we are willing to forgo the Spin(8) global symmetry. This fact is of particular physical

significance in this context because it instructs us as to which of the symmetries of the

near horizon of small black string we might hope to realize simultaneously and which not.

Moreover, the N = (2, 2) superconformal symmetry is the minimum that is required for

us to be able to apply the Kraus-Larsen argument to obtain the Wald entropy correctly.

We now like to exhibit this N = (2, 2) superconformal symmetry and in particular, display
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the 12 superconformal global symmetries for the right-movers of which we have only seen

8 thus far, namely Qȧ
0.

For this purpose let us choose the embedding SU(4)×U(1) ⊂ Spin(8) under which the

spinor and the vector representations decompose as

8s = 4+ + 4
−
, 8v = 4

−
+ 4+ (3.28)

where 4 is the fundamental representation of SU(4), 4 its complex conjugate, and super-

script denotes the U(1). One can now define the local U(1) current J as

Jn = (K12
n +K34

n +K56
n +K78

n ) . (3.29)

and the supercurrents

G+(σ+) =

√
1

α′

∑

a

Sa+∂X−
a , G−(σ+) =

√
1

α′

∑

a

S−
a ∂X

+a (3.30)

where we have suppressed the worldsheet spin index and use the notation that Sa+ trans-

forms as 4+ and S−
a as 4

−
etc. It is easy to check that these modes of these currents along

with Lm and Jn satisfy the usual N = 2 superconformal algebra. In particular in addition

to the Virasoro algebra (3.22), we have

{G+
m, G

+
n } = 0, {G−

m, G
−
n } = 0 (3.31)

{G+
m, G

−
n } = 2Lm+n + (m− n)Jm+n +

c

3

(
m2 − 1

4

)
δm+n, (3.32)

[Jm, Jn] = kmδm+n. (3.33)

Note that the anomaly in the current current commutator is proportional to k = 2p which is

related to the anomaly in the Virasoro algebra c = 12p. To see the global OSp(2|2) algebra

one has to use spectral flow and it is easy to check that (L0 − J0/2,L±1, J0, G
±
0 , G

−
+1, G

+
−1)

have the desired commutations. We see from here that G±
0 generate the usual supersym-

metries and (G−
+1, G

+
−1) generate the conformal supersymmetries.

It is useful to summarize this construction of N = 2 superconformal algebra using

group theory. We have chosen above two linear combinations G± of the eight supercharges

Qȧ, so that they form a closed algebra with the Jn. The spinor Qȧ transforms under

8c. When the 8v and 8s decompose as in (3.28), the conjugate spinor representation 8c

decomposes as

8c = 12 + 1−2 + 60 (3.34)

We are discarding 60 and keeping only 12 and 1−2 in the form of G±. In the same way one

can use the decomposition SU(2)4 ⊂ Spin(8) and use one of the SU(2) as the conformal R-

symmetry. Choosing an appropriate combination of the eight supercharges that transform

as a doublet of this SU(2) and discarding others, one obtains a closed N = 4 superconformal

algebra. It is not possible to construct a conformal R-symmetry that is larger than SU(2)

consistent with the fact that N = 4 is the largest superconformal algebra that is allowed.

We can repeat this analysis for the other compactifications where the global R sym-

metries are Spin(d) × Spin(8 − d). In all the cases, the full global symmetry cannot be

extended to linearly acting local currents and the maximal local R currents possible is

SU(2) which corresponds to N = (4, 4) superconformal symmetry.
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3.3 Holograms in the internal light cone gauge

We now discuss a somewhat unusual gauge that is a slight variant of the compact light

cone gauge. The reason for considering this particular gauge will be clear after our bulk

construction of boundary symmetries in the next section. We will encounter there commu-

tation relations between the Virasoro symmetries and the rotational symmetries that are

somewhat unusual but are quite natural from the point of view of the gauge that we call

the ‘internal light cone gauge’.

Let us first consider the bosonic side of the heterotic string. This consists of bosons

{XM ,M = 0, . . . , 9} and {H̃I , I = 1, . . . , 16}. Instead of picking the light cone gauge to

be (3.6), we define the bosons Y, Y = 1√
2
(X9 ± H̃1). We define the internal light cone

coordinates to be

Y ± =
(X0 ± Y )√

2
. (3.35)

and fix the internal light cone gauge to be

Y + = y+ +
α′
√

2

[(
p0 +

1√
2

(
q

R
+
q′

R′

))
τ +

1√
2α′ (p .R+ p′ .R′)σ

]
, (3.36)

where R′ is the radius of the internal boson and (p′, q′) are the winding and

momenta along this internal direction. The remaining transverse fields are{
Xi, (i = 1 . . . 8), Y ,Hm, (m = 2 . . . 16)

}
which we denote collectively by φa, (a = 1 . . . 24).

As before, we can define dimensionless left-moving lightcone momenta,

q+L =

√
α′

2

[
p0 +

1√
2

(
q

R
+
q′

R′

)
− 1

α′
√

2
(p .R + p′ .R′)

]
, (3.37)

so that

∂−Y
+ =

√
α′

2
q+L . (3.38)

We can solve as before the Virasoro constraints for the remaining longitudinal mode in

terms of the transverse modes,

∂−Y
− =

√
α′

q+L
(T tr

−−); (3.39)

where the superscript tr refers to all spacetime and internal degrees of freedom that are

transverse to Y ±. In terms of modes, we have:

α̃−
n =

1

q+R

(
1

2

24∑

a=1

∞∑

m=−∞
: α̃a

n−mα̃
a
m : −δn

)
. (3.40)

where α̃a
n are the modes of the fields φa. L̃n ≡ q+L α̃

−
n obey the Virasoro algebra with

cL = 24.

So far, everything went like in the usual light cone gauge quantization. But since we

did something funny, there are certainly differences. Note that the SO(32) or E8 × E8

gauge currents of the heterotic string involve the boson H1. The manifest symmetries are
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therefore broken to SO(28) and E7 ×E8. The SO(8) rotation symmetry on the other hand

does not get enhanced — the new transverse oscillator Y cannot be rotated into Xi because

of the non-zero winding around X9.

Since we expect the theory to be independent of choice of gauge, we expect that the

full gauge symmetry is actually restored. The SU(2) ⊂ E8 symmetry would be generated

by the operators ∂−H̃1, e
±i

√
2H̃1 as before, except that these fields must now be expressed

in terms of the appropriate transverse modes. We will not study this in detail for now,

and simply note the fact that the currents involving H̃1 will no longer be good conformal

currents under the conformal algebra described above. For example, the U(1) current

generated by

j̃(σ − τ) ≡ ∂−H̃
1 = ∂−

(Y − Y )√
2

(3.41)

= ∂−

(
1

2
(Y + − Y −) − 1√

2
Y

)
(3.42)

=
1

4
p+

L − 1

2
∂−φ− − 1√

2
∂−Y . (3.43)

The modes of this current

⇒ j̃n =
δn0

4
p+

L − 1

2
α̃−

n − 1√
2
α̃Y

n (3.44)

has a commutation relation with the conformal generators:

[L̃m, j̃n, ] =
1

2
mL̃n +

1√
2
nα̃Y

m+n. (3.45)

which is not the commutation relation of a usual spin one current which should have been

[L̃m, j̃n] = −nj̃m+n. (3.46)

This shows that even though the theory has manifest conformal affine symmetry in the

compact light cone gauge, in this peculiar gauge, the current is not conformal. Thus, the

conformal affine symmetry is not manifest and is broken by the gauge choice that mixes

the compact direction with an internal one.

Note that the zero mode of the current j̃0 =
∮
dσj̃ however continues to commute with

the Hamiltonian and still remains as a manifest symmetry. If we wanted to quantize the

string, this is all we need, since the only physical objects are integrated worldsheet currents.

We are however looking for a macroscopic extended string where the local currents on the

worldsheet are important.

For the superstring, we do a similar analysis. The internal direction in this case is a

little more subtle and comes from within the fermionic lattice. We should then worry about

how to construct the spin fields in order to get the spacetime supercharges and whether

they transform correctly under the physical symmetries. We begin with the RNS fields

XM , ψM , M = 0, 1 . . . 9. We pick the fermions ψ1,2,3 and bosonize two of them and get

a system (θ, ψθ) where θ is at the free fermions radius. This breaks the symmetry from

Spin(10) → Spin(7) × Spin(3).
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Defining as for the bosonic case the fields Y, Y = 1√
2
(X9 ± θ), we define the new

internal light-cone coordinates and fix the internal light cone gauge as in (3.35), (3.36). In

addition, we also define the fermions (ψY , ψY ) in an analogous manner and set

ψ+ =
1√
2
(ψ0 + ψY ) = 0. (3.47)

The remaining transverse fields are {Xi, (i = 1 . . . 8), Y , ψm, (m = 1, . . . 5), ψY }.
As for the bosonic case, we can solve the theory explicitly and find that the operators

Ln ≡ q+Rα
−
n obey a Virasoro algebra with cR = 12. In addition, we can also solve for ψ− ≡

1√
2
(ψ0−ψY ) in terms of the other oscillators. As in the usual light cone gauge, the operators

Gn ≡ q+Rψ
−
n combine with the operators Ln to form an N = 1 superconformal algebra.

The manifest symmetries that remain in this gauge are Spin(5); the Spin(3) which

rotates the directions (1, 2, 3) are broken by the choice of gauge.9 As for the heterotic case,

the Spin(3) current which rotates the fermions which used to be a conformal current of

weight one obeys an equation like (3.45). The zero mode again is a manifest symmetry,

and this can be added to the bosonic rotations to get back the Lorentz rotations.

To summarize, there is a global Lorentz rotation which is manifest in the internal

light cone gauge. The local currents which rotates the chiral spinors on the worldsheet are

however, not manifest symmetries.

Let us make a few comments about the Green-Schwarz spinors in this gauge. We

can consider the spinors which are formed by bosonizing the RNS fermions ψ1,...8 and

refermionizing them. As in section 3.3, we can write the spinors as Saα transforming as

(2, 4) under the Spin(3)× Spin(5). The SU(2) above which rotated ψ1,2,3 can be rewritten

as Saασij
abS

b
α. Our choice of gauge breaks this local symmetry on the worldsheet, but the

zero mode is recovered as transforming well under the Virasoro algebra.

The first thing to note is that these spinors are not frozen by the choice of gauge. At the

quantum level, we have set all the oscillator modes of the operator ∂+( 1√
2
X0+ 1

2X
9+ 1

2θ) to

be zero. However, the boson θ also enters the spinor lattice which is not fixed to be zero by

this choice of gauge. The operators in the spinor lattice should of course be written in terms

of the correct transverse modes. The second observation is that under the Hamiltonian L0,

the spinor currents are not dimension one half as one may have thought since the boson

θ is not a free transverse oscillator. Similar comments now apply for the supercharge Qaα

— it seems to transform locally under the Spin(3) × Spin(5), but the Spin(3) local chiral

rotations are not manifest. Because of the way the fermion is used in the choice of the

light-cone, the construction of supercharges is a bit subtle in this gauge and more work is

needed to fully understand it. However, since it is just the familiar worldsheet theory in

an unusual gauge, it is clear that such a construction must exist.

4. Holographic dual of the type II superstring

We now consider the special case of d = 3 for type II theory compactified on IR1,1×IR3×T5

9There is still a rotation of the bosons X1,2,3 but this is not the physical angular momentum that the

string has in the usual light cone gauge which rotates both the bosons and fermions.
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with the worldsheet of the macroscopic string hologram extending along IR1,1. Let us

summarize the group theory associated with this compactification. The Spin(8) symmetry

is broken by the toroidal identifications of the bosons to Spin(3)×Spin(5) where Spin(3) is

generated by the angular momentum in the noncompact directions and Spin(5) acts on the

tangent space of the torus. The Green-Schwarz spinors transform as minimal spinors (2,4)

under this decomposition, Saα, a = 1, 2, α = 1, . . . 4, with a pseudo-Majorana condition

so that there are eight real degrees of freedom. Indices are raised and lowered with the

matrices Ωab and Cαβ, and the condition is (Saα)∗ = Saα = ΩbaCαβSbβ. The details are

given in appendix B. The eight transverse bosons are split as Xi,Xm where i = 1, 2, 3 and

m = 4, . . . 8 are vector indices under SO(3) and SO(5). The eight supercurrents (Qaα)s
obey the pseudo-Majorana condition (Qaα)∗ = −Qaα with the opposite sign compared to

the spinors Saα.

Since the rotational symmetry is broken only by some global identifications of the

bosonic coordinates, the commutation relations for symmetry generators in the d = 3

case are closely related to the d = 8 case discussed in section 3. One needs to simply

decompose the Spin(8) indices in terms of Spin(3) × Spin(5) indices as above, to rewrite

the commutation relations such as (3.25) or (3.26) appropriately for the d = 3 case.

From these commutation relations of the symmetries of the hologram, we expect the

near horizon theory to have V irasoro× V irasoro symmetry. The hologram also instructs

us that there should be a Spin(3) chiral symmetry current corresponding to the symmetry

generated by the Kij
n . We further expect the symmetries of T510 and at least eight super-

symmetries that correspond to the zero modes Qaα
0 . We will focus on only right-movers

since the discussion is similar for the left-movers.

The Virasoro symmetry in the boundary is most naturally realized by having an AdS3

factor. String theory on AdS3 is by now well understood as a WZW model based on the

SL(2) current algebra on the worldsheet (see for example, [54, 55] and references therein).

We therefore start with SL(2, IR) super-affine algebra at level k which factorizes into a

bosonic SL(2, IR) affine algebra at level kb = k + 2 and three free fermions with total

central charge

c =
3kb

kb − 2
+

3

2
=

9

2
+

6

k
. (4.1)

Given such a super-affine SL(2, IR) algebra in the bulk, there is an elegant construction

due to Giveon, Kutasov, and Seiberg to obtain the boundary Virasoro algebra which has

central charge

cR = 6kp, (4.2)

where the integer p naturally enters to be identified with the winding number. Since we

want to identify it with the right-moving transverse superstring which has central charge

12p, we are forced to the choice k = 2 if we want agreement with the physical Wald entropy.

The central charge of the SL(2, IR) factor for k = 2 is thus 15/2 from (4.1). In addition,

to account for the T5 factor, we must have five bosons and their NSR fermionic partners

with total central charge 15/2. Together these factors already account for all the central

10We use T
5 to refer to a 5-torus as well its stringy symmetries depending on the context.
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charge that is allowed for the rightmoving NSR superstring. Our bulk worldsheet thus has

a target space

SL(2, IR)k=2 × T 5. (4.3)

This particular Type-II model at level k = 2 has been proposed earlier in the context

of small black holes in [28] who arrived at it from different considerations taking a limit

of magnetically charged states. However, the physical interpretation that we will advance

here for the type II theory as well as for the heterotic theory in the next section will be sub-

stantially different especially with regards to the symmetries as we now summarize below.

Given a bulk worldsheet target space as in (4.3), we are immediately led to a puzzle

if we wish to identify it with the near horizon theory of a small black string. Since the

allowed central charge of c = 15 has already been used up, there is apparently no room

for anything that can account for the rotational symmetries of the horizon. It was even

suggested in [28] that these symmetries may completely disappear in the near horizon limit.

The existence of symmetries of the near horizon geometry of the fundamental string

has been a confusing issue to understand at the level of supergravity solutions because the

answer is hidden at the string scale. Using the holograms as our guide proves to be very

useful here. From the analysis of the boundary hologram for the d = 3 case, there is no

doubt about the existence of Spin(3) × Spin(5) symmetry. As we have seen in section 2.2

, the existence of this symmetry is required also for understanding the R-symmetry and

the entropy through its relation to anomalies. Therefore, if we wish to identify the bulk

theory (4.3) as the holographic dual of the d = 3 hologram, we must correctly exhibit the

symmetries of the hologram in particular the Spin(3) generated by Kij
n . Otherwise, we

would be led to conclude that the holographic identification is incorrect.

It turns out that the rotational symmetries can be realized in a somewhat subtle way

using some special properties of the k = 2 theory. For this purpose, we can view the target

space theory as11

SL(2, IR)k=2

U(1)
× U(1) × T 5 (4.4)

This string background can be interpreted in a few different ways. In this paper, we always

consider the time direction to be inside the coset, so that it is really a two dimensional black

hole [56 – 58]. Having said that, we note that all the calculations are done in an Euclidean

setting with H+
3 (e.g. [59]) as standard in string theory, and one has to perform a Euclidean

continuation.12 This spacetime has zero temperature, and thus admits supersymmetry.

Although the irrational nature of the above conformal field theory introduces many

subtleties, in many aspects, string perturbation theory can be understood as usual, in

particular a modular invariant one-loop partition function can be written down. The

11This is a schematic but fairly standard notation, the product in this equation is not a direct product,

there are constraints which tie the U(1) to the coset.
12As was emphasized in [60], this is not such a big surprise — the convergence of the path integral

demands it just like in string theory in ten flat dimensions.
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partition function, symmetries and moduli space of precisely these theories for both the

type II and heterotic cases were discussed in a slightly different context13 in [61, 62].

Now precisely when k = 2, the U(1) boson happens to be at the free fermion radius so

that the U(1) symmetry is enhanced. The boson can then be fermionized into two fermions

which together with its fermionic partner generates the SU(2)k=2 current algebra. Using

this current algebra on the worldsheet, one can then construct the symmetry currents. We

discuss this construction of boundary Virasoro algebra and the boundary Spin(3) symmetry

in detail in section 4.2 and section 4.3 using a particular (almost) free field representation.

The construction of symmetries raises a new puzzle. One finds that the commutation

relations of the SU(2) currents with the Virasoro generators are not what one would expect

from the modes of a dimension one current. However, we find that the commutation are

precisely as would be expected in an internal light cone gauge if the SU(2) boson was used

as one of the light cone direction. This commutation leads us to identify the bulk theory

defined by (4.3) as the holographic dual of the Type-II microscopic string hologram for T5

compactification but in the internal light cone gauge.

Another related issue that we clarify in this section is that of the construction of

supersymmetries in the bulk theory. As we discussed in section 3.2, the boundary hologram

clearly has (8, 8) two dimensional supersymmetry. The supercharges we will construct

commute with the Hamiltonian L0 and are interpreted as the zero modes of the (8, 8)

supercurrents in the R sector — this implies [63] that the background is not pure global

AdS3 , rather the fermions in the bulk can have boundary conditions corresponding to a

space which is not simply connected. An example of such a space is the extremal J = M = 0

BTZ black hole [64, 65] which is singular in general relativity. The smooth string theory

we have constructed seems to capture some aspects of the physics of this extremal black

hole. It would be nice to understand the relation to earlier attempts to understand the

entropy of this black hole using the symmetries of AdS3 [66, 67].

A consistent interpretation of our theory14 is that it is the description of strings moving

in the background which is one of the many Ramond ground states which make up the

extremal massless BTZ black hole. As we shall see below, this vacuum carries maximal

allowed R charge and can be identified with a smooth AdS3 geometry with a constant

gauge connection turned on which induces the fermions to change periodicity [68 – 70].

Let us make a quick comparison to the more familiar worldsheet construction of super-

symmetric AdS3 × S3 in [60]. That construction gave rise to eight supercharges from the

leftmovers (and another eight from the rightmovers) which formed among themselves the

closed subalgebra involving the lowest
(
±1

2

)
modes of the supercharges of the N = (4, 4)

superalgebra in the NS sector. Our construction of the spacetime supercharges is explicitly

different.15 We expand on this later when we discuss supersymmetry.

13The above target space admits a generalization in that the U(1) factor can be made independent. This

introduces more moduli at a particular value of which we recover the full SL(2) structure. It also allows for

a different Euclidean continuation where the time is outside the coset.
14We thank Per Kraus for a clarifying discussion on this point.
15Such a construction was written down in the appendix of [60] where the discussion was restricted to

theories where the SU(2) currents and the SL(2) currents do not mix on the worldsheet. The result was
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Having explained the issues involved, we now present our discussion as follows. Starting

with Type-II strings on (4.3), we shall choose variables on the string worldsheet such that

we can build the symmetries of AdS3×T5. In these variables, it will be clear that there are

also additional SU(2) × SU(2) symmetries in the system. These symmetries are “stringy”

and replace the geometry at small scales.

4.1 Superstrings on AdS3 × T5

Superstrings on AdS3 were studied in [60] using the first order β-γ system relevant to the

SL(2) symmetry. We instead use the fields (τ, θ, ρ) mentioned above which are better suited

to the symmetry of our problem which near the boundary of the AdS space represent the

global time, angular direction and the radial direction of global AdS3.16 (τ, θ) are free fields

and ρ has a linear dilaton of slope Q =
√

2
k

with central charge cρ = 1+3Q2. We discuss a

zero temperature supersymmetric AdS3 theory which is Euclidean, correspondingly the τ

direction will be compact. The symmetry algebra that we will obtain is the SL(2) algebra

with a timelike direction, and its infinite extension V irasoro. The correlation functions of

the Lorentzian theory needs as usual, an analytic continuation.

Our variables must not be thought of as being the standard AdS3 variables;17 they

are instead related to it by a “T-duality” discovered in [73] using Buscher’s rules. The

geometric action of this duality has a fixed point and actually even changes the boundary

conditions — but as we discuss below, demonstrating the infinite dimensional Virasoro

algebra associated with AdS3 elevates it to an exact stringy statement. These type of

exact string backgrounds were introduced in [74 – 76].

In addition, there are three fermions ψτ , ψθ, ψρ which make the worldsheet theory N =

1 supersymmetric. We add the torus T5 represented by the free N = 1 system Xi, χi, i =

1 . . . 5. All the directions are euclidean. k is the supersymmetric level and the central charge

c = 3 + 6
k

+ 3
2 + 5 × 3

2 . To make this a critical string theory, we need add the (b, c, β, γ)

ghosts with c = −15. Demanding that the total central charge vanishes fixes k = 2.

In these variables, there is a strong coupling singularity associated with the ρ direction.

To keep string perturbation theory under control, we need to cap off this singularity. To

do this, we notice that the variables ρ, τ, ψρ, ψτ have the central charge equal to that of the

N = 2 coset SL(2)k=2/U(1). This “cigar” coset has a geometry which smoothly caps off

the strong coupling region, there is a modulus associated with the value of string coupling

at the tip18 which can be made small so that string perturbation theory is well-defined.

This is summarized in appendix A.

We have essentially spelt out the decomposition of the SL(2) WZW model as

SL(2)/U(1) × U(1) which has been used recently in many discussions of the SL(2) model

e.g. to understand spacetime supersymmetry [77, 78], to understand the spectrum [79], the

partition function [80] and interactions [81]. Like other related representations, this one

interpreted as a topological theory in spacetime after imposition of an additional constraint. In our case,

an additional constraint is not required.
16These variables were mentioned in [60] and discussed in more detail in [71, 72].
17Note that our variables actually parameterize a flat three dimensional solid cylinder in string frame.
18In the actual AdS3 space, this modulus corresponds to the fixed value of the dilaton.
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has its advantages and drawbacks. The manifest spacetime SL(2) symmetry is lost, but

we will recover explicit expressions asymptotically where we can use the above free field

variables. In the full theory, we must use the coset algebra instead. On the other hand,

the symmetries related to the other fields like θ, ψθ is always manifest in our variables.

The symmetry algebra currents which we will write down are non-normalizable to-

wards the weak coupling end as vertex operators on the worldsheet, and therefore act on

worldsheet configurations which are localized in that asymptotic region. These correspond

to inserting operators in the boundary in the AdS/CFT correspondence [82]. As for the β-γ

variables, this has precise implications for e.g. the understanding of the central charge [83].

The angular direction of the cigar is at a specific radius which in our case is the

free fermion radius R = 2.19 Since this direction is associated with the Euclidean time

direction, its compactness is not directly significant to us, however the Euclidean AdS3

geometry [60] dictates that the angular direction θ also be at the same radius. This leads

to an enhancement of symmetry which we discuss below. For now, this implies that the

vertex operators must have integer momenta in terms of this radius.

In the asymptotic region where the string coupling is small, the currents of the N = 1

superconformal algebra are
(
with Q =

√
2
k

)
:

T = −1

2
(∂ρ)2 − 1

2
Q∂2ρ− 1

2
(∂θ)2 − 1

2
(∂τ)2 − 1

2
(∂Xi)2

−1

2
ψρ∂ψρ −

1

2
ψθ∂ψθ −

1

2
ψτ∂ψτ − 1

2
χi∂χi (4.5)

G =
i

2

(
ψρ∂ρ+Q∂ψρ + ψθ∂θ + ψτ∂τ + χi∂X

i
)

We choose exactly the same structure for the left movers.

4.2 The SL(2)R symmetry from the worldsheet

If the above system indeed represents AdS3, it should be possible to find the infinite

dimensional SL2 symmetry algebra as operators built with these fields. Below, we construct

such operators. As shown in [71], this is equivalent to the construction in [60].20

Consider the following dimension half operators on the worldsheet labeled by n ∈ ZZ):

J (−1)
n (z) ≡ e2n(τ+iθ)(

1

2
ψτ − nψρ)(z) (4.6)

which obey the following OPE’s:

G(z)J (−1)
n (w) ∼ 1

z − w
e2n(τ+iθ)

(
1

2
∂τ − n∂ρ+ 2n2ψτψρ

−i2nψθ

(
1

2
ψτ − nψρ

))
≡ 1

z − w
J (0)

n

J (0)
n (z)J (0)

m (w) ∼ − nm+ a

(z − w)2
e2n(τ+iθ)(z)e2m(τ+iθ)(w) +

1

z − w
(n−m)J

(0)
n+m(w) (4.7)

19We keep α′ = 2 throughout this section.
20Our operators in (4.6) and those in [71] differ by a BRST exact operator which in the (−1) picture is

given by en(τ+iθ)(ψτ + iψθ).
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Firstly, note that the absence of higher order poles in the first OPE above involving the

supercurrent implies that all the currents e−ϕJn in the (−1) picture (J
(0)
n in the zero

picture) are BRST invariant on the string worldsheet and thus act on physical string

states. Secondly, the constant a can be changed by adding the BRST trivial operator

e−ϕen(τ+iθ)(ψτ +iψθ) mentioned above. In the zero picture this is a total derivative, and its

addition can be thought of as shifting the vacuum energy by a constant. This is also obvious

from the Virasoro algebra written below — the linear term in n in the central extension

can be reabsorbed in a constant shift of L0. We set this to unity as is the usual convention.

The charges Ln =
∮
dzJ

(0)
n obey the SL2 spacetime algebra

[Lm,Ln] = (m− n)Lm+n +
c

12
(m3 −m)δm+n. (4.8)

The central term arises from the second order pole

∮
dw

∮
dz

1

(z − w)2
e2n(τ+iθ)(z)e2m(τ+iθ)(w) =

∮
dw
(
∂we

2n(τ+iθ)(w)
)
e2m(τ+iθ)(w)

= n

∮
dw 2∂w (τ + iθ) e2(m+n)(τ+iθ)(w)

= nδm+n,0

∮
dw 2∂w (τ + iθ)

≡ nδm+n,0p. (4.9)

We see that c = 12p, where p is measured by the integral (4.9) and is interpreted as the

number of fundamental strings in the system [60] . As explained in [83], this central charge

computation done in a single string Hilbert space is the one measured by the long strings

near the boundary of AdS; the central charge measured by the short strings in the center

of AdS arises from disconnected diagrams [82].

Note that if we want the SL(2IR) currents above to be local with respect to the Hilbert

space of states involving (τ, θ), this needs the boson τ to be compact on a circle of the

same size as the θ circle which we already have. The extrapolation from the semiclassical

picture that we did above (4.5) thus seems to be consistent with the full quantum picture.

Recalling that the radius of the circle is tied intrinsically to the enhancement of symmetry,

we can restate the above statement as the following: the consistency of the perturbative

string theory with the correct symmetries produces exactly the expected entropy of the

system. We take this as strong evidence for the existence of the hologram.

4.3 The SU(2)R symmetry from the worldsheet

As mentioned earlier, we get an enhancement of symmetry since the boson θ is at the

free fermion radius. The angular coordinate θ can be written in terms of two free fermions

e±iθ ≡ 1√
2
(ψ1± iψ2), which along with the fermion ψθ ≡ ψ3 generates a left moving SU(2)2

current algebra with currents Ki(z) and corresponding charges Ki =
∮
Ki(z). This SU(2)

is a physical symmetry of the string theory as can be seen by the fact that its generators

in the (−1) picture given by the dimension half currents ψi have a single pole with the

worldsheet supercurrent (4.5).
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From general arguments [83], we expect that these symmetries would be extended to

current algebras on AdS3 giving rise to an infinite set of conserved charges, just like the

global SL(2) is extended to the infinite dimensional Virasoro algebra [41]. However, it

seems difficult to extend the SU(2) global symmetry in such a manner — the technique

above of using the null operator en(τ+iθ) naively fails because the boson θ which generates

the SU(2) zero modes is also involved in making the dimension zero operator en(τ+iθ).

One could try to define the infinite set of operators by using the OPE between the

null operators and the SU(2) currents above to define a normal ordering. This can be

summarized in a nice way by defining the boundary currents Ki(x) as an integral over the

worldsheet weighted by a dimension zero operator Λ(x, z) [83]. This is a nice exercise and

x gets the interpretation of parameterizing the worldsheet on the boundary.

But even if we do that, there seems to be a puzzle. One expects [83] that the worldsheet

currentsKi lead to corresponding currents in spacetime which are conformal currents under

the spacetime Virasoro, i.e. the charges Ki should be thought of as zero modes Ki
0 of a

infinite set of charges Ki
n which have the commutation relations

[Lm,Kn] = −nKm+n. (4.10)

In particular, the zero mode should commute with all the Virasoro generators. We can

check that the expected commutation relation above (4.10) of a conformal current does not

hold. For example, the commutation relations of the charges K3
0 = i

∮
∂θ with the Virasoro

charges (4.6) is:

[Lm,K3
0] = mLm (4.11)

This puzzle is resolved by noting that this commutation relation is precisely the one in the

internal light cone gauge of the boundary theory in the previous section!

To summarize, on the bulk string worldsheet, the V irasoro generators and the SU(2)

generators mix, this makes the conformal nature of the SU(2) currents in spacetime non-

manifest. The holographic dual of this statement is that the choice of the internal light

cone gauge on the boundary string breaks the conformal nature of the SU(2) current in

the same way. It would be very interesting to understand if there is a different formulation

of the theory where the choice of gauge is not built in, but can be added and the change

of gauge is covariant.

The identification of the SU(2)R symmetries above also allows us to identify the space-

time vacuum more precisely. The integral (4.9) tells us that the spacetime vacuum carries

the maximal allowed U(1)R ⊂ SU(2)R charge and therefore should be interpreted as the

unique vacuum in the Ramond sector with the corresponding value of the charge.

4.4 The T5 symmetries from the worldsheet

The translation symmetries associated to the T5 at a generic point in its moduli space can

be also be extended into a level one U(1)5 ×U(1)5 current algebra in spacetime. The right

and left moving operators for these symmetries are:

PiR
n =

∮
dz e−ϕχien(τ+iθ)(z), (4.12)
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and a similar one for left movers.

4.5 The supersymmetries from the worldsheet

Now that we have understood the bosonic symmetries fully from the worldsheet point of

view, we turn to the supersymmetries. The supercharges must live in representations of

the bosonic symmetries discussed above.

To get spacetime supersymmetric theories, the standard procedure in the case of com-

pactifications to flat space is to use an N = 2 algebra on the worldsheet [84]. In the case

of theories on AdS3, it was pointed out [60] that the algebra expected from the boundary

superconformal theory is actually reproduced in the bulk using a different construction

wherein one simply makes spin fields out of ten free fermions and keeps those that are

physical and mutually local.21

We actually use the standard procedure of [84] using the N = 2 worldsheet structure.22

This ensures that the supercharges we build are physical operators. The spacetime super-

charges we thus obtain are indeed not those of the NS sector of a boundary N = (4, 4)

algebra, but instead the supercharges of a N = (8, 8) superalgebra which have zero confor-

mal dimension. This is in accord with the discussion of the hologram in section 3.

To proceed, we spilt the worldsheet fields into two groups. The first consists of the

cylinder formed by ρ, θ, ψρ, ψθ. This has an N = 2 algebra (A.3) with a U(1)R symmetry

J1
R ≡ i∂φ = −iψρψθ + i∂θ. This is summarized in appendix A with X ≡ θ.23

The rest of the fields τ,Xi and their superpartners ψτ , χi (i = 1 . . . 5) are paired up

to get a complex structure and a corresponding N = 2 structure. The fermions can be

bosonized ∂H1 ≡ ψτχ1, ∂H2 ≡ χ2χ3, ∂H3 ≡ χ4χ5. The U(1) R current is then expressed

as a sum of the bilinears in these fermions J2
R ≡ i(∂H1 + ∂H2 + ∂H3).

To perform a chiral ZZ2 projection, we can use the symmetry generated by the U(1)R
current J1

R+J2
R. In practice, the GSO projection is best implemented by introducing target

space supercharges and demanding locality of physical operators, as in [85]. We introduce

the (1, 0) supercurrent operator

SA(z) = e−
ϕ
2
±i φ

2 Sa(z) (4.13)

where Sa is the spin field of SO(6) built out of the three pairs of free fermions and ϕ is the

bosonized superghost. There are 24 = 16 such supercurrent operators, and 8 of them are

21For the case k = 2, there does exist a different N = 2 structure which reproduces these supercharges

as we briefly mention below. This is not true for generic k [80].
22Such a construction was sketched in the appendix of [60], and was interpreted (after an additional

projection which threw out four of the eight supercharges) as a possible description of the R sector of the

N = (4, 4) algebra of the D1/D5 system on T
4. As we have discussed, the bosonic as well as the super

symmetries in our boundary theory are explicitly different.
23Note that in the above construction, since τ and θ are at the same free fermion radius, there is a

different N = 2 supersymmetry on the worldsheet where X ≡ τ is fermionized, and ψθ is paired with ψ5

from the torus. Using this structure to build the supercharges gives the standard construction of [60] for

the case k = 2 wherein the eight supercharges have conformal dimension ± 1
2

and form part of a spacetime

N = (4, 4) algebra. Note that the two sets of eight supercharges are not local with respect to each other,

so we have to choose one or the other.
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mutually local, these are all of one chirality in the six dimensions. Of course, we would have

obtained the same supercharges by simply making spin fields out of our ten free fermions

and demanding consistency. For the type II theories, there is also a similar condition on

the leftmoving side giving rise to the IIA or IIB theories.

Now, we don’t really have a SO(6) symmetry and we must arrange our supercurrents in

the SU(2)×Spin(5) symmetry. From the reduction of Spin(6) → Spin(5), it is clear that the

supercurrents are spinors under Spin(5). One can also check that they are spinors under the

SU(2) — recall that the K3 of the SU(2) is given by K3 =
∮
dz ∂θ, the supercharges above

all have a θ dependence in the exponent with a coefficient ±1
2 . We then have eight mutually

local supercurrents which fall into the minimal spinor of this group which is a (2, 4) with a

(pseudo)reality condition using the antisymmetric charge conjugation matrices Ωab and Cαβ

as described in section 3.3 and appendix B. We accordingly call the supercurrents Saα(z).

Note that the supercurrents are local on the worldsheet with respect to all the vertex

operators generating the spacetime bosonic symmetry currents described earlier, in par-

ticular the spacetime Virasoro currents — again, we note the special nature of the k = 2

theory, this does not happen for generic k as was discussed in [78].

The algebra of the supercharges Qaα =
∮
dz Saα(z) can be deduced by examining the

OPE of the currents (4.13) above. After performing the usual picture changing operation

on the right hand side, we get:

{Qaα, Qbβ} = 2ΩabCαβL0 + 2Ωab(Cγ
i)αβPi. (4.14)

where (i = 1 . . . 5), and L0 =
∮
∂τ . Since there is no τ dependence of the supercur-

rents (4.13), it is clear that all the supercharges have vanishing conformal dimension. If

we restrict to the subspace where P i = 0; i = 1 . . . 5, we get the supersymmetry algebra

discussed earlier.

These supercharges are dimension zero under the spacetime Virasoro algebra (4.8), but

they involve the boson θ, and hence suffer from the same problem as the SU(2)R symmetry

— the supercurrents in spacetime seem not to be dimension half conformal currents. Again,

this is what is seen in the boundary theory in the internal light cone gauge.

5. Holographic dual of the heterotic string

The heterotic string shares with the type II string a chiral set of fields and physics governed

by these fields are similar. In this section, we shall try to emphasize the novel features of the

heterotic theory arising from the leftmovers and the process of combining the two chiralities

of the string fluctuations. From the leftmovers, we expect chiral symmetry currents of

E8 × E8 × V irasoro. We then have the same bosonic fields ρ, τ,Xm;m = 1, . . . , 5, as on

the right with c = 10 and the gauge lattice of E8 ×E8 or SO(32) with c = 16.24 This gives

us already a total central charge of 26. Counting the central charge as before, this means

24For brevity we will often refer only to E8 × E8 but our considerations apply to both possibilities.
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that the target space must be of the form25

SL(2, IR)kb=4

U(1)
× T 5 × E8 × E8, (5.1)

To build a heterotic string theory, we need to combine these left movers with the right-

movers of (4.4) with kb = k + 2. For generic values of k, these heterotic cosets have not

been studied very well, but it is known that the radius of the left moving boson generating

the U(1) is related to the radius of its right moving counterpart by a factor of
√
kb/k

which is
√

2 in our case [28]. In the case of k = 2, we actually can understand this better

— the modular invariance of the partition function dictates that the left moving boson θ̃

generating the U(1) must be at the self dual radius (consistent with the above factor of√
2) so that the symmetry is enhanced to SU(2)1 [62].

If we wish to now use a construction similar to in the previous section to construct

the Virasoro symmetry in the boundary, we would require such a boson θ̃ at self dual

radius. Since we would like the torus to have free moduli corresponding to its radii, it

must actually arise from within the E8 ×E8 lattice in the same way that it arose from the

SU(2)2 represented by three free fermions for the supersymmetric side. This will non-trivial

consequences which seem strange at first sight, but as we shall see, simply corresponds to

a corresponding gauge choice in the boundary theory as in section 3.3.

5.1 The SL(2)L symmetry from the worldsheet

In the heterotic theory, the form of the generators on the bosonic side are different — they

are actually much simpler since there is no constraint arising from N = 1 worldsheet super-

gravity. The form of the SL2 currents is very similar to the supersymmetric case (4.6), (4.7),

but is simpler. For a boson θ̃ with canonical normalization θ̃(z)θ̃(0) ∼ − ln z, using the

techniques of the previous section, it can be checked that the currents

Jn(z) ≡ e
n
a
(eτ+ieθ)∂(aτ̃ − nρ̃)(z) (5.2)

are physical and obey the Virasoro algebra with central charge c = 6κp with κ = 2a2,

p = 1
a

∮
∂(τ̃ + iθ̃).

As discussed above, the value of a =
√

2, i.e. all the allowed operators are of the form

Vei
n√
2

eθ
. This implies that for the heterotic side, κ = 4 and c = 24p. The central charges are

then simply c = 6κp; with κ = 2 and κ = 4 for the supersymmetric and heterotic sides. As

was noted in [28], this is consistent with the fact that the level of the supersymmetric coset

and the bosonic coset are k = 2 and kB = k + 2 for the two theories. The interpretation

of this fact in [28] was in terms of a “thermodynamic” entropy wherein the cigar angular

variable is the Euclidean time in a finite temperature theory. It is not very clear what such

an interpretation means when the radius of the circle26 on the left and the right are not

equal like in the heterotic case above.

25This conformal field theory looks similar to the one used in [86]. However, as we shall see below, the

string theory is different. In particular, the theory we consider is supersymmetric and has no background

monopole charge.
26More precisely, the operator content of a boson at the given radius.
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The microscopic computation of the entropy above follows from the central charge

computation in the Virasoro algebras on the left and the right. The asymmetric nature

of this circle direction is completely consistent with the factorization of the theory into

left and right movers. The theory is at zero temperature consistent with supersymmetry;

there are two non-interacting Hamiltonians and the two corresponding central charges cL,R

arise simply from counting the various vacuum configurations. It is indeed interesting that

for the type II case, such a thermodynamic calculation of the entropy agrees with our

microscopic one. It would be nice to understand this better.

As mentioned in the previous section, our interpretation of the resulting spacetime

is also different. There is a stringy Spin(3) symmetry and maximal supersymmetry as

discussed in detail there.

5.2 The E8 × E8 symmetry from the worldsheet

The same thing can be repeated for the gauge generators to get an E8 × E8 (SO(32))

spacetime current algebra

J ab
n =

∮
dz Jab(z)e

n√
2
(eτ+ieθ)

(z) (5.3)

where the Jab(z) are the dimension one gauge currents on the worldsheet.

Note that because of the way we have ‘borrowed’ θ̃ from the gauge lattice only the

E8×E7 (or SO(28)) part of the gauge currents are realized as conformal affine algebra. The

SU(2) ⊂ E8×E8 generated by the boson θ̃ suffers from the same problem as the SU(2)R, i.e.

it seem to be non-conformal in spacetime. This we interpret as for the SU(2)R symmetries

to be a consequence of a particular gauge that we have chosen for this construction which

seems to correspond to an internal light cone gauge. The ‘non-conformal’ commutators

between the SU(2) currents (5.3) and Virasoro generators are then exactly what one expects

in this particular gauge. In fact, we could have embedded the SU(2) in the original gauge

lattice in many different ways which should probably be interpreted as different possible

gauge choices. Note however that the global E8 × E8 symmetry generated by the zero

modes of the currents commutes with the Hamiltonian and hence one can surely assert the

existence of the full E8 × E8 symmetry.

6. Conclusions and open problems

We have a proposed that a simple, free two dimensional SCFT living on a macroscopic

superstring can be regarded as the hologram for the gravitational theory on AdS3 in the

vicinity of a macroscopic string. For the T5 compactification, we have written down the

holographic dual as an exact worldsheet in the bulk. As we have seen the logic of this

construction is very tight which we summarize below.

1. To realize the full Virasoro symmetry of the boundary theory it is natural to have at

least an SL(2, IR) WZW model. A bulk construction of a Brown-Henneaux conformal

algebra of the AdS3 can then be given incorporating the winding number p. This
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Virasoro algebra has the correct central charge expected from the Wald entropy only

if the level of the WZW model is k = 2.

2. For the heterotic string, the consistency of the perturbative string theory demands

that the level of the left moving WZW model be kb = k + 2 = 4, which gives the

correct left moving central charge.

3. If in addition we have a T5 factor for the superstring and an additional level one

E8 × E8 factor for the left-movers of the heterotic string, then one finds that the

maximally allowed worldsheet central charge of 15 for the superstring and 26 for

the bosonic string are already saturated. The target space therefore must be of the

form (4.4) for the superstring and (5.1) for the left-moving heterotic string.

4. The form of the target space in (4.4) however raises an important puzzle about the

symmetries. If this is to be identified with a small black string in a IR3 × T 5 com-

pactification then its global symmetries must contain a Spin(3) factor corresponding

to IR3 rotations. Fortunately, precisely for k = 2, the U(1) boson in (4.4) is at the

free fermion radius and it is then possible to construct the Spin(3) currents using

this fact. All global symmetries expected for the horizon of a black hole and inde-

pendently from the boundary hologram can be constructed from the bulk theory.

Similarly, for the heterotic string, the boson is at the self dual radius which makes it

possible to recover all the symmetries.

5. One also expects Spin(3) affine currents from the bulk corresponding to Kij
n in the

hologram. The symmetry currents can be constructed from the bulk but one finds

that the commutation relations with the Virasoro generators are unusual and are

not what one might expect for the modes of a conformal dimension one current. We

note however that the commutations are exactly what one might expect from the

boundary hologram (3.45) if it was gauge fixed using an unusual internal light cone

gauge discussed in section 3. This suggests that one should identify the symmetry

algebra constructed from the bulk constructed using these particular variables with

the corresponding algebra in the hologram in a particular internal light cone gauge.

6. One can construct in the bulk eight chiral supersymmetries corresponding to the zero

modes Qaα
0 expected from the boundary in the Ramond sector.

7. To obtain a small black hole from a small black string, we should identify along the

length of the string to obtain a compact circle. The generator of such a translation is

L0 − L̃0. Note that both L0 and L̃0 commute with the Spin(3) and E8 ×E8 currents

and hence such an identification would commute with the symmetries.

It is nontrivial that a such a consistent worldsheet theory exists. The bulk worldsheet

construction is very tightly constrained. The requirements of the maximal allowed central

charge of the bulk worldsheet and the physical requirements following from symmetries

and Wald entropy lead almost uniquely to the theory that we have used. Using this theory

we are then able to give a detailed construction of all boundary symmetries in a particular
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free field realization which seems to correspond to a particular choice of internal gauge in

the boundary theory.

The most unsatisfactory part of our construction is the necessity to choose this partic-

ular unusual gauge. If the basic identification of the target space (4.4) and (5.1) is correct,

then it should be possible to construct the symmetries in a way that corresponds to the

usual (compact) light cone gauge where they are manifest. This suggests that it may be

possible to generalize the GKS construction [60] to construct the boundary Virasoro alge-

bra abstractly only from the SL(2, IR)/U(1) factor that does not require us to borrow a

U(1) factor. The coset theory does not admit SL(2, IR) symmetries. However, what we are

really after are is a Virasoro symmetry in the boundary. The coset theory is expected to

have an extended chiral algebra. For example, in the compact analog, SU(2)k/U(1) is just

the parafermion theory that does not have SU(2) symmetry but admits a conserved spin-3

currents that generates the W3 algebra which is nonlinear. Perhaps one can obtain realiza-

tion of the boundary Virasoro algebra utilizing these additional (nonlinear) symmetries in

the bulk. This is a very interesting open problem and could be related to large extended

algebras as suggested in [29] (see [32] for a recent discussion).

The existence of a worldsheet construction resolves many of the puzzles relating to

small black holes and in particular gives a construction of the near horizon geometry of

both heterotic and Type-II small black holes in four dimensions. The identification of the

macroscopic string worldsheet theory as a boundary hologram is very useful in understand-

ing the physics. In particular, the issues about global and local symmetries and the applica-

bility of the Kraus-Larsen argument in this context becomes transparent. There are chiral

stringy currents generated by Kij , a linear combination of some of which can be identified

with an R-current. These do not correspond to the nonchiral gauge symmetries generated

by J ij that are visible in supergravity for which the bulk Chern-Simons terms vanishes.

There are a number of possible generalizations and open questions.

1. The holograms make it clear that there is nothing special about d = 3. This is

consistent with what one might expect from scaling analysis in supergravity. So if a

holographic dual exists for d = 3, it is expected to exist for all values. It seems likely

that the other higher dimensional theories can be obtained simply by decompactifying

the T5. This is what is required in the boundary hologram and it should be true also

in the bulk. For example, when T5 is replaced by a noncompact IR5, one can add

to the angular momentum Jmn an orbital angular momentum term involving Lmn.

The full Spin(8) symmetry is not manifest but it is because of the choice of the gauge

that breaks it to Spin(8) to Spin(3)× Spin(3). Getting the off-diagonal currents Jmi

should also be possible but requires more work.

2. One can also contemplate holograms in more general compactifications. This gives a

rich class of examples of this kind of ‘string-string holography’ where the hologram

and the dual both have a worldsheet description. For example, T5 could be replaced

by K3 × S1. The analysis of the hologram can be repeated simply by replacing T4

by K3 in the transverse CFT of the macroscopic superstring. The holographic dual
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is obtained by a similar replacement in (4.4) so that the target space is now

SL(2, IR)k=2

U(1)
× U(1) × S1 ×K3. (6.1)

Since both the bulk and the boundary are given by tractable worldsheet conformal

field theories, it ought to be possible to test this holography in greater detail than has

been possible in other contexts. For example, a comparison of correlation functions

might be possible as was done for the related F1-NS5 system [87, 88].

3. One thing to keep in mind is that the boundary theory is expected to correspond to

a string field theory of the bulk theory that includes the multi-string states as well.

It would be interesting to see if it is possible to construct the string field theory of

the bulk using conventional methods of string field theory and to compare it with

the boundary hologram. In another related direction, it would be interesting to try

to understand the known non-perturbative objects like D-branes in the bulk AdS3

from the perspective of the boundary theory.

4. In the bulk, the AdS3 structure in the bulk is an important part of the symmetry

algebra, which manifests itself in the associated Brown-Henneaux stress tensor. In the

boundary, this translates to closed algebras which contain the Virasoro generators.

As we have seen, with a few additional assumptions, like that of linear realization and

no higher spin currents constrains these algebras very tightly. It would be interesting

to look for non-linear generalizations which involve higher spin operators.

5. There is also the related issue of single string v/s multi string Hilbert spaces. The

boundary theory has a large extended chiral algebra which involves all the chiral

operators on the string, these are not expected to be realized in the bulk single string

Hilbert space. The symmetries of the single-string Hilbert space in the bulk form

a closed subalgebra. So it seems reasonable to expect that only a maximal closed

algebra that includes Virasoro will be realized in the single-string Hilbert space and

not all extended algebras.

6. The orbital angular momentum generators Lij which rotate only the bosons on the

boundary appears to be absent in the bulk. On the boundary, for the heterotic case,

there are two symmetries generated by J ij and Sij but in the bulk we have only one.

More work is needed to fully understand the details of this correspondence.

7. A singly macroscopic string with p windings along a single circle is marginally unsta-

ble under decay into p strings with unit winding. One then has to take into account

the multi-string branch analogous the Coulomb branch in the D1-D5 system [89]. In

the context of F1-NS5 systems this necessitates turning on Fayet-Illiapoulos terms

in the gauge theory that correspond to RR fluxes in the bulk. For fundamental

strings, the multi-string branch can be prevented by the simple device of adding

momentum or winding along in internal, but not both, along an internal circle. This

makes the configuration stable under marginal decay without changing the entropy
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as explained in section 2.2. For such configurations, an internal light-cone gauge

would be more natural.

8. The way we measured entropy is by using a long fundamental string probe in AdS3.

This involved a definition (although natural) of the “number” of F-strings p which

in the context of SL(2, IR) current algebra is related to the spectrally flowed sectors.

9. The hologram that we have discussed can also be related to the usual gauge-gravity

duality [90 – 92] by S-duality. If we consider N D1-branes in this context [93], then

the dilaton becomes strong near the core. So one must perform an S-duality trasnfor-

mation to go to the weak coupling F-string description to see the horizon that we

have discussed. We are taking a deep infrared limit of the D1-brane worldvolume

theory. In this limit the 1 + 1 theory is simply the symmetric product (IR8)N/SN

where SN is the symmetric group of N objects [94]. There are many twisted sectors

of this orbifold classified by the conjugacy classes of the symmetric group which are

given by collections of cycles of various lengths (see [71, 95, 96] for a discussion in a

similar context). Here we have discussed the sector in the orbifold with cycle length p.
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A. A short summary of the N = 2 SL(2)/ U(1) coset

The semiclassical geometry of the cigar in the string frame is:

ds2 = dρ2 + tanh2

(
Qρ

2

)
dX2, X ∼ X +

4π

Q
; (A.1)

Φ = Φ0 − log cosh

(
Qρ

2

)
, Bab = 0. (A.2)

with the string coupling gs = eΦ. Semiclassically, this metric is a good one for string

propagation because the dilaton obeys the equation 2DaDbΦ + Rab = 0, where Da is

the spacetime covariant derivative, and Rab is the spacetime curvature. After adding two

fermions, the theory can be made N = 2 supersymmetric. The exact description is given

by the supersymmetric coset SL(2)k/U(1) with Q2 = 2/k. The string coupling at the tip

gs = eΦ0 is the one modulus of this theory. To get the two dimensional Lorentzian black

hole, we need to Wick rotate the angular direction X = iT .

In the asymptotic region ρ → ∞, the geometry reduces to a flat cylinder of radius

R = 2
Q

with the dilaton varying linearly along its length. The currents of the N = 2
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superconformal algebra in this region are

T = −1

2
(∂ρ)2 − 1

2
(∂X)2 − 1

2
(ψρ∂ψρ + ψX∂ψX) − 1

2
Q∂2ρ

G± =
i

2
(ψρ ± iψX)∂(ρ ∓ iX) +

i

2
Q∂(ψρ ± iψX) (A.3)

J = −iψρψX + iQ∂X ≡ i∂H + iQ∂X ≡ i∂φ

In the main text, we use this N = 2 structure to build spacetime supercharges.

In the theory on the cylinder, a generic rightmoving operator looks like O =

VeikX+(p−Q
2

)ρ, where V depends on the rest of the coordinates. The dimension of this

operator is ∆V + k2

2 + Q2

8 − p2

2 .

B. Spinor conventions

We follow the conventions of [97]. Spin(3) × Spin(5) spinors have two indices λaα with a

in the 2 of Spin(3) and α in the 4 of Spin(5). In five Euclidean dimensions, one can pick

the charge conjugation matrix C to be σ1 ⊗ σ2 which obeys Ct = −C, C† = C−1 = C,

CΓC−1 = +Γt. The sigma matrices are the standard ones: σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
,

σ3 =

(
1 0

0 −1

)
, and the convention for direct product is such that C =

(
0 σ2

σ2 0

)
.

The matrix B = Ct is used to impose a Majorana type condition. In this case, we have

a pseudo-Majorana condition using the matrices Bαβ and Ωab = iσ2. The pseudo-Majorana

condition is λ∗ = BΩλ, such that (B∗)∗ = B Another way to write this is to define the

Majorana conjugate as λ = λtΩtC and then define λ = λ†.

Spinors have a lower index λα and their Majorana conjugates have an upper index λα.

Indices are raised and lowered with C and Ω:

λaα = λa
βC

βα ; λa
α = Cβαλ

aβ (B.1)

λaα = λα
b Ωab ; λα

a = Ωabλ
αb (B.2)

In terms of the indices, the pseudo-reality condition is (λaα)∗ = λaα.
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